Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.082
Filtrar
1.
Cureus ; 16(2): e55184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38558717

RESUMO

INTRODUCTION: The primary objective of this study was to develop an environmentally friendly and efficient method for synthesizing zinc oxide (ZnO) nanoparticles (NPs), utilizing extracts from Allium sativum (garlic) plants, characterizing the synthesized ZnO NPs using various analytical techniques, and assessing their antibacterial and antioxidant properties. MATERIALS AND METHODS: The synthesis process involved utilizing extracts from garlic plants to create ZnO NPs. The NPs were subjected to comprehensive characterization through UV-visible (UV-vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Antibacterial properties were assessed against different microbial strains. In vitro antioxidant properties were evaluated through 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assays. Bioactive compounds in the synthesized NPs were also identified. RESULTS: Analysis of the UV-vis spectrum confirmed the synthesis of ZnO NPs with an approximate size of 280 nm, as indicated by the absorption peak in the surface plasmon resonance band. FTIR spectroscopy revealed the presence of functional groups such as hydroxyl and carboxyl groups. SEM analysis determined the dimensions of the NPs to be around 11 nm. XRD patterns exhibited distinct Bragg reflections, confirming specific crystallographic planes. In vitro antioxidant assays demonstrated a reduction in absorbance at 517 nm and 734 nm, indicating antioxidant activity. Antibacterial testing revealed inhibition zones against Escherichia coli, Staphylococcus aureus, Streptococcus mutans,and Enterococcus faecalis. CONCLUSION: The study successfully synthesized ZnO NPs using an eco-friendly method with garlic plant extracts. Characterization techniques confirmed the structural and chemical properties of the NPs. The synthesized NPs exhibited antioxidant and antibacterial activities, showcasing their potential for various applications. The identification of bioactive compounds further contributes to the understanding of the biological properties of the synthesized NPs.

2.
Mycology ; 15(1): 1-16, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558835

RESUMO

The burden of fungal infections on human health is increasing worldwide. Aspergillus, Candida, and Cryptococcus are the top three human pathogenic fungi that are responsible for over 90% of infection-related deaths. Moreover, effective antifungal therapeutics are lacking, primarily due to host toxicity, pathogen resistance, and immunodeficiency. In recent years, nanomaterials have proved not only to be more efficient antifungal therapeutic agents but also to overcome resistance against fungal medication. This review will examine the limitations of standard antifungal therapy as well as focus on the development of nanomaterials.

3.
ADMET DMPK ; 12(1): 63-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560713

RESUMO

Background and Purpose: The blood-brain barrier (BBB), a critical interface of specialized endothelial cells, plays a pivotal role in regulating molecular and ion transport between the central nervous system (CNS) and systemic circulation. Experimental Approach: This review aims to delve into the intricate architecture and functions of the BBB while addressing challenges associated with delivering therapeutics to the brain. Historical milestones and contemporary insights underscore the BBB's significance in protecting the CNS. Key Results: Innovative approaches for enhanced drug transport include intranasal delivery exploiting olfactory and trigeminal pathways, as well as techniques like temporary BBB opening through chemicals, receptors, or focused ultrasound. These avenues hold the potential to reshape conventional drug delivery paradigms and address the limitations posed by the BBB's selectivity. Conclusion: This review underscores the vital role of the BBB in maintaining CNS health and emphasizes the importance of effective drug delivery through this barrier. Nanoparticles emerge as promising candidates to overcome BBB limitations and potentially revolutionize the treatment of CNS disorders. As research progresses, the application of nanomaterials shows immense potential for advancing neurological therapeutics, albeit with careful consideration of safety aspects.

4.
ADMET DMPK ; 12(1): 177-192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560712

RESUMO

Background and purpose: Many sectors use nanoparticles and dispose of them in the aquatic environment without deciding the fate of these particles. Experimental approach: To identify a benign species of nanoparticles which can cause minimum harm to the aquatic environment, a comparative study was done with chemically synthesized silver nanoparticles (AgNPs) and green tea mediated synthesis (GT/AgNP) in both in vitro using human alveolar cancer cell line (A549) and normal cell line (L132), and in in vivo with zebrafish embryos. Key results: The in vitro studies revealed that GT/AgNPs were less toxic to normal cells than cancer cells. The GT/AgNPs showed high biocompatibility for zebrafish embryos monitored microscopically for their developmental stages and by cumulative hatchability studies. The reduced hatchability found in the AgNPs-treated group was correlated by differential gene expression of zebrafish hatching enzymes (ZHE) (ZHE1 and ZHE2). Conclusion: The results indicated that nanoparticles can affect the hatching of zebrafish embryos and elicit toxicity at the gene level.

5.
J Food Sci Technol ; 61(6): 1053-1068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38562597

RESUMO

The food sector faces difficulty meeting the expectations for high-quality food items with safe and clean perceptions in light of customers' increased concern and economic sanctions of synthetic and hazardous chemicals. Besides their widespread use as decoration, flowers are known to be consumed as a traditional food or a component of complementary therapy in many different civilizations worldwide. Because of their nutritional importance as a source of nutrients, proteins, essential amino acids, bioactive compounds, etc., many edible flowers can be viewed as a food source rather than just a delicacy or decoration. Polyphenols, flavonoids, and carotenoids are the phytochemicals that make up the bioactive components of edible flowers. These substances have anti-inflammatory, antibacterial, and antioxidant properties that can improve the nutritional profile of dairy products. Nanoparticles have become a cutting-edge strategy to make use of these advantages. In addition to encapsulating and protecting medicinal substances, nanoparticles made from edible flowers also enable regulated release, increasing bioavailability and durability. Numerous opportunities exist for the addition of edible flower- nanoparticles to dairy products. Their inclusion can add distinctive flavours, colours, and sensations, boosting the consumer's sensory perception. This review quotes the recent studies and discusses different aspects such as nanoparticle synthesis, quantification and characterization, health benefits, novel ingredient for the development of functional food, and the bioactive compounds for different varieties of edible flowers.Kindly check and confirm the edit made in the title.  The final title  is : "Bioactive compounds,nanoparticles synthesis, health benefits andpotential utilization of edible flowers for thedevelopment of functional dairy products: areview".

6.
Front Bioeng Biotechnol ; 12: 1361682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562665

RESUMO

Introduction: Glioblastoma (GBM) is a primary brain malignancy with a dismal prognosis and remains incurable at present. In this study, macrophages (MΦ) were developed to carry nanoparticle albumin-bound paclitaxel (nab-PTX) to form nab-PTX/MΦ. The aim of this study is to use a GBM-on-a-chip to evaluate the anti-GBM effects of nab-PTX/MΦ. Methods: In this study, we constructed nab-PTX/MΦ by incubating live MΦ with nab-PTX. We developed a microfluidic chip to co-culture GBM cells and human umbilical vein endothelial cells, mimicking the simplified blood-brain barrier and GBM. Using a syringe pump, we perform sustainable perfusion of nutrient media. To evaluate the anti-GBM effects nab-PTX/MΦ, we treated the GBM-on-a-chip model with nab-PTX/MΦ and investigated GBM cell proliferation, migration, and spheroid formation. Results: At the chosen concentration, nab-PTX did not significantly affect the viability, chemotaxis and migration of MΦ. The uptake of nab-PTX by MΦ occurred within 1 h of incubation and almost reached saturation at 6 h. Additionally, nab-PTX/MΦ exhibited the M1 phenotype, which inhibits tumor progression. Following phagocytosis, MΦ were able to release nab-PTX, and the release of nab-PTX by MΦ had nearly reached its limit at 48 h. Compared with control group and blank MΦ group, individual nab-PTX group and nab-PTX/MΦ group could inhibit tumor proliferation, invasion and spheroid formation. Meanwhile, the anti-GBM effect of nab-PTX/MΦ was more significant than nab-PTX. Discussion: Our findings demonstrate that nab-PTX/MΦ has a significant anti-GBM effect compared to individual nab-PTX or MΦ administration, suggesting MΦ as potential drug delivery vectors for GBM therapy. Furthermore, the developed GBM-on-a-chip model provides a potential ex vivo platform for innovative cell-based therapies and tailored therapeutic strategies for GBM.

7.
ACS Biomater Sci Eng ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564666

RESUMO

Despite being a weaker metal, zinc has become an increasingly popular candidate for biodegradable implant applications due to its suitable corrosion rate and biocompatibility. Previous studies have experimented with various alloy elements to improve the overall mechanical performance of pure Zn without compromising the corrosion performance and biocompatibility; however, the thermal stability of biodegradable Zn alloys has not been widely studied. In this study, TiC nanoparticles were introduced for the first time to a Zn-Al-Cu system. After hot rolling, TiC nanoparticles were uniformly distributed in the Zn matrix and effectively enabled phase control during solidification. The Zn-Cu phase, which was elongated and sharp in the reference alloy, became globular in the nanocomposite. The strength of the alloy, after introducing TiC nanoparticles, increased by 31% from 259.7 to 340.3 MPa, while its ductility remained high at 49.2% elongation to failure. Fatigue performance also improved greatly by adding TiC nanoparticles, increasing the fatigue limit by 47.6% from 44.7 to 66 MPa. Furthermore, TiC nanoparticles displayed excellent phase control capability during body-temperature aging. Without TiC restriction, Zn-Cu phases evolved into dendritic morphologies, and the Al-rich eutectic grew thicker at grain boundaries. However, both Zn-Cu and Al-rich eutectic phases remained relatively unchanged in shape and size in the nanocomposite. A combination of exceptional tensile properties, improved fatigue performance, better long-term stability with a suitable corrosion rate, and excellent biocompatibility makes this new Zn-Al-Cu-TiC material a promising candidate for biodegradable stents and other biodegradable applications.

8.
Small Methods ; : e2301713, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564783

RESUMO

The label-free imaging of inorganic nanoparticles (NPs) using confocal laser scanning microscopy (CLSM) provides a powerful and versatile tool for studying interactions between NPs and biological systems. Without the need for exogenous labels or markers, it simply benefits from the differential scattering of visible photons between biomaterials and inorganic NPs. Validation experiments conducted on fixed and living cells in real-time, as well as mouse tissue sections following parenteral administration of NPs. Additionally, by incorporating reporter fluorophores and utilizing both reflectance and fluorescence imaging modalities, the method enables high-resolution multiplex imaging of cellular structures and NPs. Different sizes and concentrations of Au NPs are tested as for Ag, Fe3O4, and CeO2 NPs, all with biological interest. Overall, the comprehensive study of NP imaging by confocal microscopy in reflectance mode provides valuable insights and tools for researchers interested in monitoring the nano-bio interactions.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38566386

RESUMO

Wound healing is crucial for maintaining skin integrity and preventing complications from external threats. Various plants, such as Achillea millefolium, Aloe vera, Curcuma longa, Calendula officinalis, Camellia sinensis, Azadirachta indica, and Plantago, have demonstrated wound healing capabilities and have been used in herbal medicine for wound care. NLCs are second-generation lipid nanoparticles, blending solid and liquid lipids to improve medication loading and limit leakage. NLCs have been used in various applications, including cosmeceuticals, chemotherapy, gene therapy, and brain targeting. Wound healing is divided into four stages: hemostasis, inflammatory response, proliferation, and remodeling. Factors such as age, gender, chronic disorders, and local agents like infections can affect recovery. These plants' antiinflammatory, antioxidant, and antibacterial activities have demonstrated potential in wound healing. Combining herbal medicinal plants and nanostructured lipid carriers (NLCs) can revolutionise wound treatment and improve overall healthcare outcomes.

10.
Adv Mater ; : e2402319, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558447

RESUMO

The complex self-assembled network of neurons and synapses that comprizes the biological brain enables natural information processing with remarkable efficiency. Percolating Networks of Nanoparticles (PNNs) are complex self-assembled nanoscale systems that have been shown to possess many promising brain-like attributes and which are therefore appealing systems for neuromorphic computation. Here we perform experiments that show that PNNs can be utilized as physical reservoirs within a nanoelectronic reservoir computing framework and demonstrate successful computation for several benchmark tasks (chaotic time series prediction, non-linear transformation and memory capacity). For each task we compile relevant literature results and show that the performance of the PNNs compares favourably to that previously reported from nanoelectronic reservoirs. We then demonstrate experimentally that PNNs can be used for spoken digit recognition with state-of-the-art accuracy. Finally, we emulate a parallel reservoir architecture, which increases the dimensionality and richness of the reservoir outputs and results in further improvements in performance across all tasks. This article is protected by copyright. All rights reserved.

11.
ACS Appl Bio Mater ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563162

RESUMO

Aberrant activation of the cyclic GMP-AMP synthase (cGAS)/Stimulator of Interferon Genes (STING) pathway has been implicated in the development and progression of a myriad of inflammatory diseases including colitis, nonalcoholic steatohepatitis, amyotrophic lateral sclerosis (ALS), and age-related macular degeneration. Thus, STING pathway inhibitors could have therapeutic application in many of these inflammatory conditions. The cGAS inhibitor RU.521 and the STING inhibitor H-151 have shown promise as therapeutics in mouse models of colitis, ALS, and more. However, these agents require frequent high-dose intraperitoneal injections, which may limit translatability. Furthermore, long-term use of systemically administered cGAS/STING inhibitors may leave patients vulnerable to viral infections and cancer. Thus, localized or targeted inhibition of the cGAS/STING pathway may be an attractive, broadly applicable treatment for a variety of STING pathway-driven ailments. Here we describe STING-Pathway Inhibiting Nanoparticles (SPINS)-poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with RU.521 and H-151-as a platform for enhanced and sustained inhibition of cGAS/STING signaling. We demonstrate that SPINs are equally or more effective at inhibiting type-I interferon responses induced by cytosolic DNA than free H-151 or RU.521. Additionally, we describe a SPIN formulation in which PLGA is coemulsified with poly(benzoyloxypropyl methacrylamide) (P(HPMA-Bz)), which significantly improves drug loading and allows for tunable release of H-151 over a period of days to over a week by varying P(HPMA-Bz) content. Finally, we find that all SPIN formulations were as potent or more potent in inhibiting cGAS/STING signaling in primary murine macrophages, resulting in decreased expression of inflammatory M1-like macrophage markers. Therefore, our study provides an in vitro proof-of-concept for nanoparticle delivery of STING pathway inhibitors and positions SPINs as a potential platform for slowing or reversing the onset or progression of cGAS/STING-driven inflammatory conditions.

12.
Free Radic Res ; : 1-23, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563404

RESUMO

Microwave (MW) radiations are widely used in communications, radar and medical treatment and thus human exposure to MW radiations have increased tremendously, raising health concerns as MW has been implicated in induction of oxidative stress condition in our body. Few metallic nanoparticles (NPs) have been shown to mimic the activity of antioxidant enzymes and hence can be applied for the modulation of adverse effects caused by MW. Present study aimed to assess the biocompatibility of Bovine serum albumin (BSA) conjugated manganese dioxide nanoparticles (MNP*) and to counteract the impact of MW on the haematological system of male Wistar rats. Experiments were conducted in two sets. Set I involved biodistribution and antioxidant activity evaluation of MNP* at different doses. Results showed a dose-dependent increase in antioxidant potential and significant biodistribution in the liver, spleen, kidney, and testis, with no organ damage, indicating its biocompatibility. Experiment set II constituted the study of separate and combined effects of MW and MNP* on haematological parameters, oxidative status, and genotoxic study in the blood of rats. MW exposure significantly altered red blood cell count, hemoglobin, packed cell volume percentage, monocyte percentage, aspartate aminotransferase, Alanine aminotransferase and uric acid. MW also induced significant DNA damage in the blood. A significant increase in lipid peroxidation and a decrease in antioxidant enzyme superoxide dismutase was also observed in MW exposed group. However, these alterations were reduced significantly when MNP* was administered. Thus, MNP* showed biocompatibility and modulatory effects against MW-induced alterations in the haematological system of rats.

13.
Sci Rep ; 14(1): 7715, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565575

RESUMO

Titanium dioxide nanoparticles (TiO2-NPs) have found wide applications in medical and industrial fields. However, the toxic effect of various tissues is still under study. In this study, we evaluated the toxic effect of TiO2-NP on stomach, liver, and kidney tissues and the amelioration effect of clove oil nanoemulsion (CLV-NE) against DNA damage, oxidative stress, pathological changes, and the apoptotic effect of TiO2-NPs. Four groups of male mice were subjected to oral treatment for five consecutive days including, the control group, the group treated with TiO2-NPs (50 mg/kg), the group treated with (CLV-NE) (5% of the MTD), and the group treated with TiO2-NPs plus CLV-NE. The results revealed that the treatment with TiO2-NPs significantly caused DNA damage in the liver, stomach, and kidney tissues due to increased ROS as indicated by the reduction of the antioxidant activity of SOD and Gpx and increased MDA level. Further, abnormal histological signs and apoptotic effect confirmed by the significant elevation of p53 expression were reported after TiO2-NPs administration. The present data reported a significant improvement in the previous parameters after treatment with CLV-NE. These results showed the collaborative effect of the oils and the extra role of nanoemulsion in enhancing antioxidant effectiveness that enhances its disperse-ability and further promotes its controlled release. One could conclude that CLV-NE is safe and can be used as a powerful antioxidative agent to assess the toxic effects of the acute use of TiO2-NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Camundongos , Masculino , Animais , Óleo de Cravo/toxicidade , Nanopartículas/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Titânio/toxicidade , Dano ao DNA
14.
J Nanobiotechnology ; 22(1): 147, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570829

RESUMO

The challenges associated with activating ferroptosis for cancer therapy primarily arise from obstacles related to redox and iron homeostasis, which hinder the susceptibility of tumor cells to ferroptosis. However, the specific mechanisms of ferroptosis resistance, especially those intertwined with abnormal metabolic processes within tumor cells, have been consistently underestimated. In response, we present an innovative glutathione-responsive magnetocaloric therapy nanodrug termed LFMP. LFMP consists of lonidamine (LND) loaded into PEG-modified magnetic nanoparticles with a Fe3O4 core and coated with disulfide bonds-bridged mesoporous silica shells. This nanodrug is designed to induce an accelerated ferroptosis-activating state in tumor cells by disrupting homeostasis. Under the dual effects of alternating magnetic fields and high concentrations of glutathione in the tumor microenvironment, LFMP undergoes disintegration, releasing drugs. LND intervenes in cell metabolism by inhibiting glycolysis, ultimately enhancing iron death and leading to synthetic glutathione consumption. The disulfide bonds play a pivotal role in disrupting intracellular redox homeostasis by depleting glutathione and inactivating glutathione peroxidase 4 (GPX4), synergizing with LND to enhance the sensitivity of tumor cells to ferroptosis. This process intensifies oxidative stress, further impairing redox homeostasis. Furthermore, LFMP exacerbates mitochondrial dysfunction, triggering ROS formation and lactate buildup in cancer cells, resulting in increased acidity and subsequent tumor cell death. Importantly, LFMP significantly suppresses tumor cell proliferation with minimal side effects both in vitro and in vivo, exhibiting satisfactory T2-weighted MR imaging properties. In conclusion, this magnetic hyperthermia-based nanomedicine strategy presents a promising and innovative approach for antitumor therapy.


Assuntos
Ferroptose , Neoplasias , Humanos , Glutationa , Ferro , Ácido Láctico , Glucose , Dissulfetos , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio , Microambiente Tumoral
15.
Front Cell Neurosci ; 18: 1360870, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572073

RESUMO

Degeneration of photoreceptors in the retina is a leading cause of blindness, but commonly leaves the retinal ganglion cells (RGCs) and/or bipolar cells extant. Consequently, these cells are an attractive target for the invasive electrical implants colloquially known as "bionic eyes." However, after more than two decades of concerted effort, interfaces based on conventional electrical stimulation approaches have delivered limited efficacy, primarily due to the current spread in retinal tissue, which precludes high-acuity vision. The ideal prosthetic solution would be less invasive, provide single-cell resolution and an ability to differentiate between different cell types. Nanoparticle-mediated approaches can address some of these requirements, with particular attention being directed at light-sensitive nanoparticles that can be accessed via the intrinsic optics of the eye. Here we survey the available known nanoparticle-based optical transduction mechanisms that can be exploited for neuromodulation. We review the rapid progress in the field, together with outstanding challenges that must be addressed to translate these techniques to clinical practice. In particular, successful translation will likely require efficient delivery of nanoparticles to stable and precisely defined locations in the retinal tissues. Therefore, we also emphasize the current literature relating to the pharmacokinetics of nanoparticles in the eye. While considerable challenges remain to be overcome, progress to date shows great potential for nanoparticle-based interfaces to revolutionize the field of visual prostheses.

16.
Small ; : e2402126, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573960

RESUMO

The instability of Nickel (Ni)-rich cathodes at high voltage is a critical bottleneck toward developing superior lithium-ion batteries. This instability is driven by cathode-electrolyte side reactions, causing rapid degradation, and compromising the overall cycle life. In this study, a protective coating using dispersed "magnetite (FeO.Fe2O3)" nanoparticles is used to uniformly decorate the surface of LiNi0.8Co0.1Mn0.1O2 (NMC 811) microparticles. The modified cathode delivers significant improvement in electrochemical performance at high voltage (≈4.6 V) by suppressing deleterious electrode-electrolyte interactions. A notably higher cycle stability, rate performance, and overall energy density is realized for the coated cathode in a conventional liquid electrolyte battery. When deployed in pellet-stacked solid-state cells with Li6PS5Cl as the electrolyte, the magnetite-coated NMC 811 showed strikingly superior cycling stability than its uncoated counterpart, proving the versatility of the chemistry. The facile surfactant-assisted coating process developed in this work, in conjunction with the affordability, abundance, and nontoxic nature of magnetite makes this a promising approach to realize commercially viable high voltage Ni-rich cathodes that exhibit stable performance in liquid as well as solid-state lithium-ion batteries.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38578378

RESUMO

Nanoparticles (NPs) engineered as drug delivery systems continue to make breakthroughs as they offer numerous advantages over free therapeutics. However, the poor understanding of the interplay between the NPs and biomolecules, especially blood proteins, obstructs NP translation to clinics. Nano-bio interactions determine the NPs' in vivo fate, efficacy and immunotoxicity, potentially altering protein function. To fulfill the growing need to investigate nano-bio interactions, this study provides a systematic understanding of two key aspects: (i) protein corona (PC) formation and (ii) NP-induced modifications on protein's structure and stability. A methodology was developed by combining orthogonal techniques to analyze both quantitative and qualitative aspects of nano-bio interactions, using human serum albumin (HSA) as a model protein. Protein quantification via liquid chromatography-mass spectrometry, and capillary zone electrophoresis (CZE) clarified adsorbed protein quantity and stability. CZE further unveiled qualitative insights into HSA forms (native, glycated HSA and cysteinylated), while synchrotron radiation circular dichroism enabled analyzing HSA's secondary structure and thermal stability. Comparative investigations of NP cores (organic vs. hybrid), and shells (with or without polyethylene glycol (PEG)) revealed pivotal factors influencing nano-bio interactions. Polymeric NPs based on poly(lactic-co-glycolic acid) (PLGA) and hybrid NPs based on metal-organic frameworks (nanoMOFs) presented distinct HSA adsorption profiles. PLGA NPs had protein-repelling properties while inducing structural modifications on HSA. In contrast, HSA exhibited a high affinity for nanoMOFs forming a PC altering thereby the protein structure. A shielding effect was gained through PEGylation for both types of NPs, avoiding the PC formation as well as the alteration of unbound HSA structure.

18.
J Pharm Bioallied Sci ; 16(Suppl 1): S186-S188, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595548

RESUMO

Background: Nanosized antibacterial agents can be used to prevent biofilm buildup on orthodontic appliances and auxiliaries, limiting microbial adherence and preventing caries. Nanoparticles (NPs) can enhance the antibacterial properties of orthodontic materials due to their smaller particle size and larger surface area. Materials and Methods: The study's material analysis was divided into four groups, numbered I through IV, using Transbond XT Primer as a control and modifying group I by adding various antibacterial agents. 98.1 g of mutans-sanguis agar was dissolved in 1,000 ml of warm distilled water and autoclaved for 15 minutes at 121°C and 15 lb pressure. 176 disk specimens of 6 mm in diameter were created, sterilized in an autoclave, and heated to 60°C in a hot air oven for 1 hour. Ten milliliters of primer containing different antimicrobial agents was applied to the sterilized disks. Four petri plates were used for each concentration, with 16 disks in each group. 44 petri plates in all were utilized. Results: The orthodontic primer modified by the addition of antibacterial agents showed a significantly increased antimicrobial activity, and nanobenzalkonium chloride (BAC) at 5% concentration showed the highest antimicrobial efficacy among all groups. Nanohydroxyapatite showed the least. Conclusion: Within the confines of the current investigation, it was determined that the addition of antibacterial agents had significantly higher antimicrobial activity and BAC at 5% concentration had the highest antimicrobial efficacy of all the groups.

19.
Front Bioeng Biotechnol ; 12: 1374423, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595994

RESUMO

Ovarian cancer presents a substantial challenge due to its high mortality and recurrence rates among gynecological tumors. Existing clinical chemotherapy treatments are notably limited by drug resistance and systemic toxic side effects caused by off target drugs. Sonodynamic therapy (SDT) has emerged as a promising approach in cancer treatment, motivating researchers to explore synergistic combinations with other therapies for enhanced efficacy. In this study, we developed magnetic sonodynamic nanorobot (Fe3O4@SiO2-Ce6, FSC) by applying a SiO2 coating onto Fe3O4 nanoparticle, followed by coupling with the sonosensitizer Ce6. The magnetic FSC nanorobot collectives could gather at fixed point and actively move to target site regulated by magnetic field. In vitro experiments revealed that the magnetic FSC nanorobot collectives enabled directional navigation to the tumor cell area under guidance. Furthermore, under low-intensity ultrasonic stimulation, FSC nanorobot collectives mediated sonodynamic therapy exhibited remarkable anti-tumor performance. These findings suggest that magnetically actuated sonodynamic nanorobot collectives hold promising potential for application in target cancer therapy.

20.
Colloids Surf B Biointerfaces ; 238: 113909, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599076

RESUMO

Nasopharyngeal carcinoma (NPC) is a common head and neck malignancy, which is characterized by high incidence and aggression with poor diagnosis and limited therapeutic opportunity. The innovative strategy for achieving precise NPC active-targeting drug delivery has emerged as a prominent focus in clinical research. Here, a minimalist cancer cell membrane (CCM) shielded biomimetic nanoparticle (NP) was designed for NPC active-targeting therapy. Chemotherapeutant model drug doxorubicin (DOX) was loaded in polyamidoamine (PAMAM) dendrimer. The PAMAM/DOX (PD) NP was further shielded by human CNE-2 NPC CCM. Characterization results verified that the biomimetic PAMAM/DOX@CCM (abbreviated as PDC) NPs had satisfactory physical properties with high DOX-loading and excellent stability. Cell experiments demonstrated that the CNE-2 membrane-cloaked PDC NPs presented powerful cellular uptake in the sourcing cells by homologous targeting and adhesive interaction. Further in vivo results confirmed that this biomimetic nanoplatform had extended circulation and remarkable tumor-targeting capability, and the PDC NPs effectively suppressed the progression of CNE-2 tumors by systemic administration. This CCM-shielded biomimetic NP displayed a minimalist paradigm nanoplatform for precise NPC therapy, and the strategy of CCM-shielded biomimetic drug delivery system (DDS) has great potential for extensive cancer active-targeting therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...